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ABSTRACT   

 

      In this simulation study, different schemes for monitoring production processes with of 

autocorrelated data are compared. A time series forecast is applied to the autocorrelated process 

and the resultant residuals are monitored by a control chart and two common tracking signals. 

Performance comparisons of different monitoring schemes have been typically based on the 

Average Run Length (ARL) criterion  but we offer the the Cumulative Distribution Function 

(CDF) as an alternative and more informative performance evaluation criterion. This study 

compares the performance of the Individuals Control Chart (ICC), the Smoothed Error Tracking 

Signal  (ETS), and the Cumulative Sum (CTS) Tracking Signal (CTS) in terms of their ability to 

detect the presence of additive outliers.  Based on the CDF, we found that the Individuals Control 

Chart offers the greatest probability of early detection of an additive outlier in an autocorrelated 

process. 
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Introduction 

 

      The occurrence of large unusual observations is not uncommon in time series data. These 

outliers may be due to recording errors or to one-time unique situations such as an unexpected 

change in demand for a product or a change in a production system. Fox (1972) defines two types 

of outliers that may occur in practice;  additive outliers,  corresponding to external disturbances 

that affect the value of a single observation; and, innovational outliers, or step shifts, refering to 

internal disturbances that change the value of an observation and all other successive 

observations. Typically in process control environments, the performance of monitoring schemes 

have been compared based on only in terms of their ability to detect step shifts or innovational 

outliers (Montgomery, 2013).  However, which monitoring scheme detects the presence of an 

additive outlier most quickly is also of great interest in determining abnormal process behavior, a 

measurement error, a recording error or incorrect specifications based on distributional 

assumptions. (Walfish, 2006).  

      Autocorrelation implies the existence of a relationship between the outcomes produced in 

different time periods by the same process. With advances in measurement technology along with 

more frequent sampling, today‟s manufacturing processes often yield observations that are 

autocorrelated. The inertia effects present in most manufacturing processes coupled with the 

advent of automated gages that sample processes more frequently, often render most process data 

autocorrelated (Montgomery and Mastrangelo 1991, Woodall and Faltin 1993).  
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     This paper compares the performance of  an Individuals Control Chart (ICC), the Smoothed 

Error Tracking Signal (ETS) and the Cumulative Tracking Signal (CTS) in monitoring residuals 

from exponential smoothing forecasts applied to autoregressive process data of order one, 

denoted by AR(1), in the presence of additive outliers. Montgomery and Mastrangelo (1991) 

show that a number of chemical and manufacturing processes conform to this model.  The study 

shows that the Individuals Control Chart offers the highest probability of early detection of an 

additive outlier in AR(1) processes.  

 

Literature review 

 

      The presence of autocorrelation creates unique problems to the performance of process 

monitoring schemes. Positive autocorrelation tends to increase the frequency of out-of-control 

signals that are detected by monitoring schemes. Positive autocorrelation occurs most often in 

production environments and chemical operations (Woodall and Faltin, 1993).   

      The performance of control charts in the presence of autocorrelation has been explored by a 

number of authors. Superville and Adams (1994) compare the performance of the Individuals 

chart, the Cumulative Sum (CUSUM) chart, and the Exponentially Weighted Moving Average 

(EWMA) chart in terms of their ability to detect step shifts in autocorrelated processes. Superville 

and Adams (1995) compare the performance of these charts to different tracking signals again in 

their ability for early detection of step shifts in autocorrelated process. Lu and Reynolds (1999) 

suggest the use of a combined Shewhart-EWMA chart for autocorrelated data. Lianjie, Daniel 

and Fugee (2002) suggest the use of a triggered CUSCORE chart on residuals. Lee et al. (2009) 

propose distribution-free charts for monitoring shifts in the mean of autocorrelated processes. Wu 

and Yu (2010) advocate a neural network approach for monitoring the mean and variance of an 

autocorrelated process. Chang and Wu (2011) present a Markov Chain approach to calculating 

the ARL for control charts on autocorrelated process data. Superville and Yorke (2012) compare 

the performance of Individuals, CUSUM and EWMA charts in detecting additive outliers in an 

autocorrelated process.   

      In the field of statistical process control, control charts have traditionally been used to monitor 

production processes.  In the forecasting and time series fields, tracking signals perform a similar 

function, the monitoring of forecasting systems. The statistical tools are similar in both fields and 

have a common purpose, namely to provide timely information concerning changes in the 

systems.   

      Alwan and Roberts (1988) have proposed a method for monitoring autocorrelated data that 

involves the application of a time-series forecast to the process and monitoring the residuals. 

Unusual behavior in the process should result in a large error that is reflected as a signal on a 

control chart or tracking signal. Traditionally, monitoring tools have been compared on the basis 

of Average Run Lengths (ARLs).  

     The ARL is the expected  number of observations in which a single period outlier is detected 

by the monitoring scheme as as an out-of-control situation. However, simple exponential 

smoothing forecasts recover quickly from step increases as well as additive outliers in the time 

series process that it monitors. This would suggest that the performance of forecast-based 

schemes should be based on the probability of "early detection" rather than on the ARL.  As any 

average measure, the ARL is inflated by long run lengths, and thus it is an inadequate measure of 
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quick recovery, especially with monitoring schemes characterized by short run lengths. Hence the 

cumulative distribution function (CDF) of the run lengths is offered as an alternative criterion to 

the average run length (ARL) for the selection of an appropriate monitoring scheme. The CDF 

provides the cumulative probability of a detecting a signal occurring by the ith time period after a 

disturbance.  
       

A model of autocorrelated data 
  

     A time series model that is widely used in inventory and quality control applications is the 

autoregressive integrated moving average (ARIMA) model (Box and Jenkins 1976). The 

ARIMA(p,d,q) model is denoted by 

 

      p (B) d Xt = q (B)t                                                                (1) 

 

where p (B) = (1- 1B - 2B2 - ... - pBp) is an autoregressive polynomial of order p,  

q (B) = (1 - 1B - 2B2 - ... - qBq) is a moving average polynomial of order q, B is the backshift 

operator,  is the backward difference operator, and t, the white noise,  is a sequence of 

independent normal random errors with mean zero and variance 2, denoted by t ~ N(0, 2). 

       A special case of  the ARIMA model that has been found to be useful in production and 

quality control environments is the ARIMA(1,0,0), referred to as the first-order autoregressive 

model and denoted by AR(1). It is represented by 

 

          Xt =  + Xt-1 + t                                                                           (2) 

 

where  is the autocorrelation coefficient and  is the drift, or average increase per period, of the 

series. Without loss of generality, it is assumed in this article that t ~  N(0,1) and  = 0. 

Montgomery and Mastrangelo (1991) show that a number of chemical and manufacturing 

processes conform to this model.   

      The simple exponential smoothing forecast, also known as the exponentially weighted 

moving average (EWMA) forecast is given by 

 

Ft+1 = FXt + (1 - F)Ft  ,                   0 F 1                              (3)  

       

where Xt represents the process observation at time period t, and Ft+1 represents the one-step-

ahead forecast for observation Xt+1 at time period t.  The forecast error at time period t, denoted 

by et, is defined as 

     et = XtFt. 

 

      Alwan and Roberts (1988) have observed that processes that do not drift too rapidly are well 

modeled by simple exponential smoothing. For the AR(1) model with no drift, Cox (1961) has 

shown that optimal simple exponential smoothing in terms of minimum mean square forecast 

error is given by 
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  
F
=1– ½[(1 -  ) / ] ,         1/3 <     1     (4) 

 

where  is the parameter of the AR(1) process. This result is used in the simulations discussed in 

the following sections. 

 

Monitoring schemes for residuals 

 

      In this study, the Individuals Control Chart (ICC), and the Smoothed Error (ETS) and 

Cumulative Sum (CTS) tracking signals are applied to exponential smoothing residuals and their 

performances evaluated. 

 

The Individuals Control Chart 

 

      The Individuals Control Chart applied to residuals requires an estimate of the variance of the 

residuals.  Defining the ith moving range to be 
 

        MRi = ei - ei-1 ,          i =2, 3,...,m                             (5)  

and 

MR MR
m

i
i

m


 


1

1 2

,                                (6) 

 

the control limits are 
 

                           C1MR/d2                      (7) 

 

where the constant C1 is typically set to 3.0 resulting in an ARL of 370 for independent  

observations. Montgomery (2013) has tabulated values for C1 and d2. For comparing monitoring 

scheme performance in this simulation study, control limits are set to achieve an in-control ARLs 

of 250 for each monitoring scheme. Values for these control limits are provided in the 

“Simulation results” section of this paper. 

 

The Smoothed Error Tracking Signal 

 

 Trigg's (1964) Smoothed Error tracking signal (ETS) is given by 
 

ETSt = Et / MADt                                                                         (8) 

where 

Et = 1et + (1 - 1)Et-1 ,                                        0 1 1                 (9) 

and 

MADt = 2et + (1 - 2)MADt-1 ,                          0 2 1 .             (10) 

 

 

X
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Typically, E0 = 0 and MAD0 is set equal to its expected value which is approximately equal to 0.8

e (where e is the standard deviation of the residuals). A signal occurs if ETSt exceeds a critical 

value K1. Gardner (1983) suggests that the value of K1 should be set to achieve a desired in-

control ARL. For comparing monitoring scheme performance in this simulation study, control 

limits are set to achieve an in-control ARLs of 250 for each monitoring scheme.  

 

 The Cumulative Sum Tracking Signal  

   

     Brown's  (1959) Cumulative Sum  tracking signal (CTS) is given by 
 

CTSt = SUMt / MADt                                                           (11) 

where 

SUMt = et + SUMt-1 .                                                               (12) 

 

The value of MAD0 is set equal to its expected value as with ETS0. The value of  SUM0 is set 

equal to zero.  A signal occurs if the value of CTSt exceeds a critical value K2.  Gardner (1983) 

suggests that the value of  K2 should be set to achieve a desired in-control ARL. For comparing 

monitoring scheme performance in this simulation study, control limits are set to achieve an in-

control ARLs of 250 for each monitoring scheme.  

      Concerning the choice of parameters for the forecast model F (equation 4) and tracking 

signals (1 and 2), McKenzie (1978) and Gardner (1985) recommend that  F 1, with 1= 0.1 

commonly used in practice. Small values of 1 allow the ETS to respond more quickly to small 

disturbances in the demand process. Traditionally, the smoothing parameters in the numerator and 

denominator of the ETS have been set equal to each other, that is, 1 = 2. More recently, 

McClain (1988) has suggested that the smoothing parameter in the MAD model (equation 10), 

 2, be smaller than the parameter in the error model (equation 9), 1, so that the variance of the 

residuals may be stabilized.  

 

Performance evaluation: ARL vs. CDF 
 

      The ARL is the standard criterion on which the relative performance of both tracking signals 

and control charts has been traditionally based.  However, exponentially smoothed forecasts tend 

to recover quickly from disturbances in the time series that it monitors.  The impact of forecast 

recovery on the ARLs of control charts applied to residuals has been discussed by Wardell, 

Moskowitz, and Plante (1994) and others.  In general, the rate of forecast recovery depends on the 

type of shift, the underlying model of the series, and the forecasting equation used.  Forecast 

recovery is shown to significantly impact the ARLs of all monitoring schemes.      

      Concerning forecast recovery in the presence of additive outliers, consider for example, an 

exponential smoothing forecast applied to an AR(1) process in which an additive outlier occurs in 

the process. Figure 1 shows a sequence of fifty observations from an AR(1) process with  = 0.9 

and the optimal exponentially smoothed forecasts (with F= 0.9444). Figure 2 displays the 

resulting residuals. 
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      At time period 31, an additive outlier occurs. The forecast lags behind the observed data at 

time period 32 resulting in a large forecast error. By time period 33, the forecast has adjusted to 

the new level of the process. The residuals have returned to values close to zero as they were 

prior to the step increase. Notice that the 'window of opportunity' available for detection of this 

time-series disturbance is quite small.  This „quick‟ adjustment is bound to happen at other 

instances, but sometimes an outlier will result in a much longer run;  the average ARL of such a 

monitoring scheme will tend to be inflated by very large runs that seldom occur. 

 

Figure 1. Observations from an AR(1) process with  = 0.9 and exponentially smoothed forecasts 

with  = 0.9444. An additive outlier of size 3p occurs at observation 31. 
 

 

Figure 2. Residuals from an AR(1) process with  = 0.9 and exponentially smoothed forecasts 

with  = 0.9444. An additive outlier of size 3p occurs at observation 31. 
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      The need to select monitoring schemes that provide quick detection of process disturbances, 

leads one to investigate  the cumulative probability of a signal following a process disturbance as 

a meaningful criterion for the comparison of forecast-based monitoring schemes. 

      The use of the cumulative distribution functions (CDF) as an evaluation criterion is not new. 

Barnard (1959), Bissell (1968) and Gan (1991) recommend its use for control charts of 

independent observations. McClain (1988) advocates its use for forecast-based schemes which 

incorporate tracking signals. The CDF measures the cumulative percentage of disturbances in a 

time series that are detected early.   

 

 Design of the simulation study 

 

In this simulation study, three monitoring schemes were compared. They are the traditional 

Shewhart control charts, or ICC, the ETS, and the CTS as defined earlier. ARLs and CDFs are 

provided for each monitoring scheme for outliers of size 3.0p, where 2
p= 2/ (1-2), is the 

variance of an AR(1) process.  

      The initial values of the smoothed-error for the ETS (eq. 8) and the sum of errors for the CTS 

(eq. 11) were set to zero as suggested by Gardner (1985) and McClain (1988). The smoothing 

constants 1and 2 were set to 0.10 as suggested by McKenzie (1978).  

      The simulation study was conducted as follows: 

i) AR(1) series with autoregressive parameter values of   =0.0, 0.5, 0.7, and 0.9 and N(0,1) 

were generated by the International Mathematical and Statistical (IMSL) (2010) 

subroutine RNARM / DRNARM. The subroutine generates a time series from a specified 

Autoregressive Moving Average (ARMA) model. The parameter  was set equal to zero, 

without loss of generality. 

ii) The first fifty observations were used to allow for a burn-in period, for 1000 renderings 

of the series, 

iii) The forecast is started at time period 2 with its initial value set equal to the first observed 

data point. 

iv) After the burn-in period and before any disturbance in the process, fifty (50) preliminary 

sequences of residuals (each sequence consisting of 5000 observations) are used to 

estimate the mean and variance of the residuals. The residuals from theses preliminary 

samples are not monitored by a control chart or tracking signal but are only used to 

estimate the mean and variance of the forecast errors.  

v) Ttracking signals and control charts are constructed based on the estimates obtained in step 

(iv). The initial MAD values were set to 0.8e (e is the standard deviation of the residuals) as 

suggested by Montgomery, Johnson and Gardiner (1990). 

vi) At observation 51, an additive outlier of size 3.0p (where 2
p= 2/ (1-2)), was 

introduced to each time series that was generated in step 1. The ICC, ETS and CTS are 

applied to the residuals. Each monitoring scheme is allowed to run until a single signal 

occurs. At this point, a single run length is recorded and the monitoring scheme reset for 

the next iteration. 
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vii) Steps (i)-(iii), (v) and (vi) were repeated 1000 times resulting in 1000 run lengths. These 

1000 run lengths are used to estimate the ARLs and CDFs after an additive outlier of 

size 3.0p. 

 

Simulation results  
 

      Table 1 displays parameters and control limits used in the simulation study.  

 

TABLE 1 

Parameters and Control Limits Used in the Simulation Study (in-control ARL =250) 

 

 

For all monitoring schemes, control limits were obtained for an in-control ARL of 250. Table 2 

shows simulated ARLs and CDFs for the Individuals control charts and the ETS and CTS 

tracking signals applied to the optimal exponential smoothing residuals from an AR(1) process 

with  ranging from 0.0 to 0.9. Outliers are simulated as 3p. The results can be summarized as 

follows: 

 

1.  With the exception of the case where =0.9, the magnitude of the ARLs for the 

autocorrelated cases (>0) are significantly larger than for the independent case (=0). The 

difference in ARL magnitudes can be attributed to the quick  recovery of the EWMA 

forecast. Recall that the ARL, as an average measure, is inflated by long run lengths. It is 

unable to adequately reflect short run lengths that are indicative of quick forecast recovery. 

For forecast-based schemes, ARLs are not informative.  

 

2.  Based on CDFs, the Individuals Control Chart provides a higher probability of early 

detection of an outlier for the autocorrelated cases where =0.5 and 0.7. This occurs 

although the Individuals Control Chart may have a longer ARL than any other monitoring 

scheme. As an example, consider the case where =0.5. The Individuals control chart 

provides the highest probability of early detection on the first observation after the outlier 

(60.5%) despite having a longer ARL (92.7) than the other monitoring schemes. The 

detection of an outlier early, that is, within the first few observations after the occurrence of 

an outlier is critical since the forecast recovers quickly. This suggests the use of the 

Individuals control chart for the autocorrelated cases. 

 

 

 

Parameters used in the Simulation Control Limits 

Φ λF α1=α2 ICC ETS CTS 

0.0 0.0000 0.1 2.880 0.658 23.250 

0.5 0.5000 0.1 1.577 0.466 5.500 

0.7 0.7857 0.1 0.660 0.459 5.433 

0.9 0.9444 0.1 0.166 0.546 8.900 
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TABLE 2 

Average Run Lengths and Percentage of Signals detected by the ith observation after an 

outlier of size 3p. Residuals are from AR(1) processes with autoregressive parameters . 
 

φ 
Monitorin

g Scheme 
ARL 

CDF – Cum. Prob. of number of periods where outlier is 

detected 

1 2 3 4 5 6 

0 

 

 

0.5 

 

 

 

0.7 

 

 

 

0.9 

ICC 

ETS 

CTS 

ICC 

ETS 

CTS 

ICC 

ETS 

CTS 

ICC 

ETS 

CTS 

1.8 

4.3 

21.9 

92.7 

43.1 

4.5 

42.9 

90.0 

6.4 

1.0 

61.9 

52.6 

54.2 

3.9 

0.0 

60.5 

12.6 

5.4 

84.9 

20.2 

9.9 

100 

30.2 

0.9 

79.0 

12.7 

0.0 

64.0 

32.8 

21.6 

85.2 

34.1 

22.6 

100 

35.6 

2.0 

90.5 

30.5 

0.0 

64.3 

48.3 

40.3 

85.4 

40.5 

34.5 

100 

38.0 

3.1 

96.1 

53.9 

0.0 

64.8 

60.0 

58.7 

85.4 

46.6 

45.9 

100 

39.5 

5.0 

98.2 

75.7 

0.0 

64.9 

67.5 

73.0 

85.5 

49.4 

54.2 

100 

39.8 

7.6 

98.9 

92.2 

0.0 

65.2 

72.6 

83.2 

85.5 

52.4 

61.7 

100 

40.3 

10.3 

 
 

Conclusion  
  

     This paper compared forecast-based quality control schemes for monitoring autocorrelated 

observations in the presence of additive outliers. The quick recovery property of forecasting tools 

suggests that comparisons of control charts and tracking signals applied to residuals be based on 

the CDF on the run lengths and not on the ARL. The Individuals control chart is recommended 

over the Smoothed Error and CUSUM tracking signals as it offers the highest probability of early 

detection of an additive outlier in an AR(1) process. 
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